If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+200X-14400=0
a = 1; b = 200; c = -14400;
Δ = b2-4ac
Δ = 2002-4·1·(-14400)
Δ = 97600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{97600}=\sqrt{1600*61}=\sqrt{1600}*\sqrt{61}=40\sqrt{61}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(200)-40\sqrt{61}}{2*1}=\frac{-200-40\sqrt{61}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(200)+40\sqrt{61}}{2*1}=\frac{-200+40\sqrt{61}}{2} $
| 2(c-6.2)+5=4.68 | | 6x+12=8x+8-12 | | 5x-4=3-21 | | 12y+3=6y-15 | | 7(b-8)=(b+12) | | 7j^2+3=255 | | 9(a+4)=(a-3) | | 3x+40=1x+50 | | 5b-1=6b-9 | | 6.66=2.83(t-6)+1 | | -2v=v+3 | | X-5+3x=2X+2(X+3) | | -2(g-3)=-8 | | 12x-21=105 | | 7y-3=4+15 | | 6b-4=2b+16 | | 14x+26=84 | | 8k^2=392 | | 5x–1=-2(x–3) | | X^2+160x-9600=0 | | 1/2(x+4)^2-72=0 | | 3a+6=a+18a= | | (3-2x)+3-12x-4-20x=2-6x | | x+4/12=x/x+2 | | 3x^2+200x-10000=0 | | 4(x–2)=7x+1 | | 119-5×=12x | | 1/2(x+4)^2=72 | | 10=x^2+4x+5 | | 3x+3x+2x+115+122+75=720 | | 8y+8=2(y+1) | | 14–4x=2(17–x) |